- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Ziyao (2)
-
Bao, Han (1)
-
Bore, Sigbjørn_Løland (1)
-
Bullara, Domenico (1)
-
Cai, Chun (1)
-
Car, Roberto (1)
-
Chang, Junhan (1)
-
Chen, Yixiao (1)
-
Ding, Ye (1)
-
E, Weinan (1)
-
Epstein, Irving R. (1)
-
Goodall, Rhys_E_A (1)
-
Han, Jiequn (1)
-
Huang, Jiameng (1)
-
Huang, Li’ang (1)
-
Jia, Weile (1)
-
Konow, Christopher (1)
-
Li, Yifan (1)
-
Li, Zeyu (1)
-
Liang, Wenshuo (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The coloring of zebrafish skin is often used as a model system to study biological pattern formation. However, the small number and lack of movement of chromatophores defies traditional Turing-type pattern generating mechanisms. Recent models invoke discrete short-range competition and long-range promotion between different pigment cells as an alternative to a reaction-diffusion scheme. In this work, we propose a lattice-based “Survival model,” which is inspired by recent experimental findings on the nature of long-range chromatophore interactions. The Survival model produces stationary patterns with diffuse stripes and undergoes a Turing instability. We also examine the effect that domain growth, ubiquitous in biological systems, has on the patterns in both the Survival model and an earlier “Promotion” model. In both cases, domain growth alone is capable of orienting Turing patterns above a threshold wavelength and can reorient the stripes in ablated cells, though the wavelength for which the patterns orient is much larger for the Survival model. While the Survival model is a simplified representation of the multifaceted interactions between pigment cells, it reveals complex organizational behavior and may help to guide future studies.more » « less
-
Zeng, Jinzhe; Zhang, Duo; Lu, Denghui; Mo, Pinghui; Li, Zeyu; Chen, Yixiao; Rynik, Marián; Huang, Li’ang; Li, Ziyao; Shi, Shaochen; et al (, The Journal of Chemical Physics)DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features, such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, DP-range correction, DP long range, graphics processing unit support for customized operators, model compression, non-von Neumann molecular dynamics, and improved usability, including documentation, compiled binary packages, graphical user interfaces, and application programming interfaces. This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, this article presents a comprehensive procedure for conducting molecular dynamics as a representative application, benchmarks the accuracy and efficiency of different models, and discusses ongoing developments.more » « less
An official website of the United States government
